1,866 research outputs found

    Supersonic through-flow fan design

    Get PDF
    The NASA Lewis Research Center has embarked on a program to experimentally prove the concept of a supersonic through-flow fan which is to maintain supersonic velocities throughout the compression system with only weak shock-wave flow losses. The detailed design of a supersonic through-flow fan and estimated off-design performance with the use of advanced computational codes are described. A multistage compressor facility is being modified for the newly designed supersonic through-flow fan and the major aspects of this modification are briefly described

    Recognition of potential heat and water tradeoffs in vegetation-based city-level climate adaptation policies in arid and semi-arid environments

    Full text link
    The primary objectives of this study are to understand if and how cities are adapting to heat and water stress and to characterize their understanding of the potential tradeoffs associated with vegetation-based strategies. I address these objectives using two approaches: a comparative analysis of climate adaptation and sustainability planning documents in cities vulnerable to heat and water stress and an in-depth case study of the response to heat and water threats in Los Angeles. The comparative analysis of city plans builds a broad understanding of how cities are planning to adapt to heat and water stress and the degree to which they articulate an understanding of, and mitigate the potential for, maladaptive measures. The Los Angeles case study provides the opportunity to more deeply trace how the process of adapting to heat and water stress has unfolded in a single city. To do so, I locate the city’s contemporary policies in an historical continuum with previous municipal environmental policy efforts, in local patterns of urban development and their entailing political and economic foundations, and in regional, state, national, and international environmental policy hierarchies

    Electrostatically Tunable Meta-Atoms Integrated With In Situ Fabricated MEMS Cantilever Beam Arrays

    Get PDF
    Two concentric split ring resonators (SRRs) or meta-atoms designed to have a resonant frequency of 14 GHz are integrated with microelectromechanical systems cantilever arrays to enable electrostatic tuning of the resonant frequency. The entire structure was fabricated monolithically to improve scalability and minimize losses from externally wire-bonded components. A cantilever array was fabricated in the gap of both the inner and outer SRRs and consisted of five evenly spaced beams with lengths ranging from 300 to 400 μm. The cantilevers pulled in between 15 and 24 V depending on the beam geometry. Each pulled-in beam increased the SRR gap capacitance resulting in an overall 1-GHz shift of the measured meta-atom resonant frequency

    Benefits of Hybrid-Electric Propulsion to Achieve 4x Increase in Cruise Efficiency for a VTOL Aircraft

    Get PDF
    Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and flight testing that verifies transition flight control. A final down-selected vehicle is also presented

    SRRs Embedded with MEMS Cantilevers to Enable Electrostatic Tuning of the Resonant Frequency

    Get PDF
    A microelectromechanical systems (MEMS) cantilever array was monolithically fabricated in the gap region of a split ring resonator (SRR) to enable electrostatic tuning of the resonant frequency. The design consisted of two concentric SRRs each with a set of cantilevers extending across the split region. The cantilever array consisted of five beams that varied in length from 300 to 400 μm, with each beam adding about 2 pF to the capacitance as it actuated. The entire structure was fabricated monolithically to reduce its size and minimize losses from externally wire bonded components. The beams actuate one at a time, longest to shortest with an applied voltage ranging from 30–60 V. The MEMS embedded SRRs displayed dual resonant frequencies at 7.3 and 14.2 GHz or 8.4 and 13.5 GHz depending on the design details. As the beams on the inner SRR actuated the 14.2 GHz resonance displayed tuning, while the cantilevers on the outer SRR tuned the 8.4 GHz resonance. The 14.2 GHz resonant frequency shifts 1.6 GHz to 12.6 GHz as all the cantilevers pulled-in. Only the first two beams on the outer cantilever array pulled-in, tuning the resonant frequency 0.4 GHz from 8.4 to 8.0 GHz

    Surface materials of the Viking landing sites

    Get PDF
    Martian surface materials viewed by the two Viking landers (VL-1 and VL-2) range from fine-grained nearly cohesionless soils to rocks. Footpad 2 of VL-1, which landed at 2.30 m/s, penetrated 16.5 cm into very fine grained dunelike drift material; footpad 3 rests on a rocky soil which it penetrated ≈3.6 cm. Further penetration by footpad 2 may have been arrested by a hard substrate. Penetration by footpad 3 is less than would be expected for a typical lunar regolith. During landing, retroengine exhausts eroded the surface and propelled grains and rocks which produced craters on impact with the surface. Trenches excavated in drift material by the sampler have steep walls with up to 6 cm of relief. Incipient failure of the walls and failures at the end of the trenches are compatible with a cohesion near 10–10^2 N/m^2. Trenching in rocky soil excavated clods and possibly rocks. In two of five samples, commanded sampler extensions were not achieved, a situation indicating that buried rocks or local areas with large cohesions (≥10 kN/m^2) or both are present. Footpad 2 of VL-2, which landed at a velocity between 1.95 and 2.34 m/s, is partly on a rock, and footpad 3 appears to have struck one; penetration and leg strokes are small. Retroengine exhausts produced more erosion than occurred for VL-1 owing to increased thrust levels just before touchdown. Deformations of the soil by sampler extensions range from doming of the surface without visible fracturing to doming accompanied by fracturing and the production of angular clods. Although rocks larger than 3.0 cm are abundant at VL-1 and VL-2, repeated attempts to collect rocks 0.2–1.2 cm across imbedded in soil indicate that rocks in this size range are scarce. There is no evidence that the surface sampler of VL-2, while it was pushing and nudging rocks ≈25 cm across, spalled, chipped, or fractured the rocks. Preliminary analyses of surface sampler motor currents (≈25 N force resolution) during normal sampling are consistent with cohesionless frictional soils (ϕ ≈ 36°) or weakly cohesive frictionless soils (C < 2 kN/m^2). The soil of Mars has both cohesion and friction

    Independent evaluation of a simple clinical prediction rule to identify right ventricular dysfunction in patients with shortness of breath

    Get PDF
    BACKGROUND: Many patients have unexplained persistent dyspnea after negative computed tomographic pulmonary angiography (CTPA). We hypothesized that many of these patients have isolated right ventricular (RV) dysfunction from treatable causes. We previously derived a clinical decision rule (CDR) for predicting RV dysfunction consisting of persistent dyspnea and normal CTPA, finding that 53% of CDR-positive patients had isolated RV dysfunction. Our goal is to validate this previously derived CDR by measuring the prevalence of RV dysfunction and outcomes in dyspneic emergency department patients. METHODS: A secondary analysis of a prospective observational multicenter study that enrolled patients presenting with suspected PE was performed. We included patients with persistent dyspnea, a nonsignificant CTPA, and formal echo performed. Right ventricular dysfunction was defined as RV hypokinesis and/or dilation with or without moderate to severe tricuspid regurgitation. RESULTS: A total of 7940 patients were enrolled. Two thousand six hundred sixteen patients were analyzed after excluding patients without persistent dyspnea and those with a significant finding on CTPA. One hundred ninety eight patients had echocardiography performed as standard care. Of those, 19% (95% confidence interval [CI], 14%-25%) and 33% (95% CI, 25%-42%) exhibited RV dysfunction and isolated RV dysfunction, respectively. Patients with isolated RV dysfunction or overload were more likely than those without RV dysfunction to have a return visit to the emergency department within 45 days for the same complaint (39% vs 18%; 95% CI of the difference, 4%-38%). CONCLUSION: This simple clinical prediction rule predicted a 33% prevalence of isolated RV dysfunction or overload. Patients with isolated RV dysfunction had higher recidivism rates and a trend toward worse outcomes

    Predictors of 30-Day Hospital Readmission among Maintenance Hemodialysis Patients: A Hospitals Perspective

    Get PDF
    Over 35% of patients on maintenance dialysis are readmitted to the hospital within 30 days of hospital discharge. Outpatient dialysis facilities often assume responsibility for readmission prevention. Hospital care and discharge practices may increase readmission risk. We undertook this study to elucidate risk factors identifiable from hospital-derived data for 30-day readmission among patients on hemodialysis
    • …
    corecore